Dr. Ricardo Matute Morales

Ricardo1

Dr. Ricardo Matute Morales

ricardo.matute@ubo.cl


ORCID logo https://orcid.org/0000-0002-0644-3799

El Dr. Matute recibió su de Bioquímico de la Universidad de Chile en el año 2005. En el año 2011, recibió su grado de Doctor en Química de la Universidad de  Chile. Ha realizado diversas estadía postdoctorales en reconocidos centros tales como: University of California, Los Angeles (2011), University of Southern California (2013), Caltech (2016 y 2017). Actualmente se desempeña como Académico e Investigador del CIBQA.


Líneas de Investigación


Se investiga la naturaleza de las reacciones químicas en diversos sistemas de interés en base a marcos teóricos de química cuántica que permitan describir apropiadamente los procesos electrónicos involucrados en la ruptura y formación de enlaces covalentes. Se utilizan tanto métodos cuánticos ab initio como métodos basados en la Teoría del Funcional de la Densidad para caracterizar las energías y estructuras asociadas a los intermediarios y los estados de transición que participan en diversos mecanismos de reacción. Mi línea de investigación considera además el estudio de la catálisis enzimática por medio de modelos multiescala, de tipo híbrido QM/MM, y en particular el desarrollo e implementación del método EVB (Empirical Valence Bond).


Proyectos


    1. FONDECYT Regular 1181260: Development of an Empirical Valence Bond Model for the Computer-Aided Design of Photon-Activated Enzyme Catalysts

    2. FONDECYT REGULAR 1180348: The E=E[N, υ(r)] density functional theory representation as a basis for the development and exploration of chemical reactivity models along bond-breaking/bond-forming processes

    3. FONDECYT REGULAR 1181754: Developments and exploration of chemical reactivity and bonding within the Bonding Evolution Theory (BET) as a suitable framework for understanding the mechanism of chemical reactions

    4. NSF / XSEDE Allocation Grant MCB170140: Exploring the rotation of the gamma shaft of F1-ATPase in single-molecule experiments.


Publicaciones


    1. Cuitino, L.; Matute, R.; Retamal, C.; Bu, G. J.; Inestrosa, N. C.; Marzolo, M. P. ApoER2 Is Endocytosed by a Clathrin-Mediated Process Involving the Adaptor Protein Dab2 Independent of Its Rafts’ Association. Traffic 2005, 6 (9), 820–838. [link]

    2. Matute, R.; Contreras, R.; Rez-Hernández, G. P.; González, L. The Chromophore Structure of the Cyanobacterial Phytochrome Cphl as Predicted by Time-Dependent Density Functional Theory. J. Phys. Chem. B 2008, 112 (51), 16253–16256. [link]

    3. Matute, R.; Contreras, R.; González, L. Time-Dependent DFT on Phytochrome Chromophores: A Way to the Right Conformer. J. Phys. Chem. Lett. 2010, 1 (4), 796–801. [link]

    4. Dietzek, B.; Fey, S.; Matute, R.; González, L.; Schmitt, M.; Popp, J.; Yartsev, A.; Hermann, G. Wavelength-Dependent Photoproduct Formation of Phycocyanobilin in Solution – Indications for Competing Reaction Pathways. Chem. Phys. Lett. 2011, 515 (1–3), 163–169. [link]

    5. Yang, Y.; Linke, M.; von Haimberger, T.; Hahn, J.; Matute, R.; Gonzalez, L.; Schmieder, P.; Heyne, K. Real-Time Tracking of Phytochrome’s Orientational Changes During Pr Photoisomerization. J. Am. Chem. Soc. 2012, 134 (3), 1408–1411. [link]

    6. Neculqueo, G.; Rojas Fuentes, V.; Lopez, A.; Matute, R.; Vasquez, S. O.; Martinez, F. Electronic Properties of Thienylene Vinylene Oligomers: Synthesis and Theoretical Study. Struct. Chem. 2012, 23 (6), 1751–1760. [link]

    7. Matute, R. A.; Houk, K. N. The Triplet Surface of the Zimmerman Di-p-Methane Rearrangement of Dibenzobarrelene. Angew. Chemie – Int. Ed. 2012, 51 (52), 13097–13100. [link]

    8. Yang, Y.; Linke, M.; von Haimberger, T.; Matute, R.; Gonzalez, L.; Schmieder, P.; Heyne, K. Active and Silent Chromophore Isoforms for Phytochrome Pr Photoisomerization: An Alternative Evolutionary Strategy to Optimize Photoreaction Quantum Yields. Struct. Dyn. 2014, 1 (1). [link]

    9. Matute, R. A.; Garcia-Garibay, M. A.; Houk, K. N. Theory of Substituent Effects on the Regioselectivity of Di-π-Methane Rearrangements of Dibenzobarrelenes. Org. Lett. 2014, 16 (19), 5232–5234. [link]

    10. Jiménez-Osés, G.; Liu, P.; Matute, R. A.; Houk, K. N. Competition between Concerted and Stepwise Dynamics in the Triplet Di-π-Methane Rearrangement. Angew. Chemie – Int. Ed. 2014, 53 (33), 8664–8667. [link]

    11. Morales-Bayuelo, A.; Matute, R. A.; Caballero, J. Understanding the Comparative Molecular Field Analysis (CoMFA) in Terms of Molecular Quantum Similarity and DFT-Based Reactivity Descriptors. J. Mol. Model. 2015, 21 (6). [link]

    12. Mavri, J.; Matute, R. A.; Chu, Z. T.; Vianello, R. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine. J. Phys. Chem. B 2016, 120 (14), 3488–3492. [link]

    13. Matute, R. A.; Yoon, H.; Warshel, A. Exploring the Mechanism of DNA Polymerases by Analyzing the Effect of Mutations of Active Site Acidic Groups in Polymerase β. Proteins Struct. Funct. Bioinforma. 2016, 84 (11), 1644–1657. [link]

    14. Matute, R. A.; Pérez, P.; Chamorro, E.; Villegas-Escobar, N.; Cortés-Arriagada, D.; Herrera, B.; Gutiérrez-Oliva, S.; Toro-Labbé, A. Reaction Electronic Flux Perspective on the Mechanism of the Zimmerman Di-π-Methane Rearrangement. J. Org. Chem. 2018, 83 (11), 5969–5974.

    15. Ortega, D. E.; Ormazábal-Toledo, R.; Contreras, R.; Matute, R. A. Theoretical Insights into the E1cB/E2 Mechanistic Dichotomy of Elimination Reactions. Org. Biomol. Chem. 2019, 17 (46), 9874–9882. [link]

    16. Villegas-Escobar, N.; Matute, R. A. The Keto–Enol Tautomerism of Biliverdin in Bacteriophytochrome: Could It Explain the Bathochromic Shift in the Pfr Form?†. Photochem. Photobiol. 2020. [link]

    17. Vemula, S. K.; Malci, A.; Junge, L.; Lehmann, A.-C.; Rama, R.; Hradsky, J.; Matute, R. A.; Weber, A.; Prigge, M.; Naumann, M.; Kreutz, M. R.; Seidenbecher, C. I.; Gundelfinger, E. D.; Herrera-Molina, R. The Interaction of TRAF6 With Neuroplastin Promotes Spinogenesis During Early Neuronal Development. Front. Cell Dev. Biol. 2020, 8. [link]

    18. Ortega, D. E.; Matute, R. A.; Toro-Labbé, A. Exploring the Nature of the Energy Barriers on the Mechanism of the Zirconocene-Catalyzed Ethylene Polymerization: A Quantitative Study from Reaction Force Analysis. J. Phys. Chem. C 2020, 124 (15), 8198–8209. [link]

    19. Ortega, D. E.; Matute, R. A. Description of the Reaction Intermediate Stabilization for the Zimmerman Di-π-Methane Rearrangement on the Basis of a Parametric Diabatic Analysis. J. Phys. Chem. A 2020, 124 (18), 3573–3580. [link]

    20. Ormazábal-Toledo, R.; Richter, S.; Robles-Navarro, A.; Maulén, B.; Matute, R. A.; Gallardo-Fuentes, S. Meisenheimer Complexes as Hidden Intermediates in the Aza-SNAr Mechanism. Org. Biomol. Chem. 2020, 18 (22), 4238–4247. [link]

    21. Saltarini, S.; Villegas-Escobar, N.; Martínez, J.; Daniliuc, C. G.; Matute, R. A.; Gade, L. H.; Rojas, R. S. Toward a Neutral Single-Component Amidinate Iodide Aluminum Catalyst for the CO2 Fixation into Cyclic Carbonates. Inorg. Chem. 2021. [link]

Translate »