Dr. César Morales Verdejo

Cesar1

Dr. César Morales Verdejo

cesar.morales@ubo.cl


ORCID logo https://orcid.org/0000-0001-2345-6789

El Dr. Morales recibió su grado de Licenciado en Química de la Pontificia Universidad Católica de Chile en el año 2006. En el año 2010 recibió su grado de Doctor en Química de la misma casa de estudios. Posteriormente ha realizado diversas estadías postdoctorales entre ellas destaca Universidad Paul Sabatier , Toulouse, Francia (2010), Argonne National Laboratory, USA (2010-2011), The University of Chicago, Chicago, USA (2011). También ha sido profesor visitante en The University of Chicago, Chicago, USA (2014) y el Instituto de Ciencias de Materiales de Barcelona-CSIC, Barcelona, España (2017).


Líneas de Investigación


Díseño y síntesis de nuevos catalizadores.

Nuestra línea de investigación se encuentra enfocada en la síntesis de compuestos inorgánicos, orgánicos y organometálicos, principalmente centrados en el estudio de la deslocalización electrónica, transferencia electrónica e interacción intermetálica en sistemas de valencia mixta homo- y heterbinucleares para el desarrollo de nuevos materiales con aplicaciones en catálisis homogénea y materiales energéticos.


Proyectos


    1. Proyecto Anillo ACT192175: Rational Design of Molecular Catalytic Materials for Energy Conversion and Electrochemical Reactions (2019-2021)

    2. RDECOM-US ARMY W911NF-18-1-0398: Higher performance burn rate catalysts for composite solid propellants based on graphene and dendrimers (2018-2019)

    3. FONDEF IDeA ID18 10085: Desarrollo y validación del apósito prototipo con nanoformulación de cobre para el tratamiento de heridas crónicas infectadas (2018-2020)

    4. Fondecyt Regualar 1180023: Higher performance burn rate catalysts for composite solid propellants based on nanocomposites of ferrocene modified dendrimers, metal nanoparticles and reduced graphene oxide (2018-2022)

    5. Fondecyt Regular 1161297: Synthesis and characterization of homo- and heterobimetallic complexes ferrocene-type with potential applications as burning rate catalysts in solid propellants (2016-2019)

    6. Fondecyt Regular 1140359: Supramolecular Assemblies derived from Tungsten-Alkylidyne with Possible Application in the Reduction of CO2 (2014-2017)

    7. Fondecyt de Iniciación 11110273: Supramolecular Assemblies derived from Tungsten-Alkylidyne with Possible Application in the Reduction of CO2 (2011-2013)


Publicaciones


    1. Morales-Verdejo, C. A.; Newsom, M. I.; Cohen, B. W.; Vibbert, H. B.; Hopkins, M. D. Dihydrogen Activation by a Tungsten–Alkylidyne Complex: Toward Photoredox Chromophores That Deliver Renewable Reducing Equivalents. Chem. Commun. 2013, 49 (90), 10566–10568. [link]

    2. Mella-Raipán, J.; Hernández-Pino, S.; Morales-Verdejo, C. A.; Pessoa-Mahana, D. 3D-QSAR/CoMFA-Based Structure-Affinity/Selectivity Relationships of Aminoalkylindoles in the Cannabinoid CB1 and CB2 Receptors. Molecules . 2014. [link]

    3. Adams, C.; Riviere, P.; Riviere-Baudet, M.; Morales-Verdejo, C. A.; Dahrouch, M.; Morales, V.; Castel, A.; Delpech, F.; Manríquez, J. M.; Chávez, I. Catalytic Study of Heterobimetallic Rhodium Complexes Derived from Partially Alkylated S-Indacene in Dehydrogenative Silylation of Olefins. J. Organomet. Chem. 2014, 749, 266–274. [link]

    4. Morales-Verdejo, C. A.; Martínez-Díaz, I.; Adams, C.; Araneda, J. F.; Oehninger, L.; Mac-Leod Carey, D.; Muñoz-Castro, A.; Arratia-Pérez, R.; Chávez, I.; Manríquez, J. M. New Mono and Bimetallic Iron Complexes Derived from Partially Methylated S-Indacene. Evidence of a Trinuclear Iron s-Indacene Complex. Polyhedron 2014, 69, 15–24. [link]

    5. Morales-Verdejo, C. A.; Schott, E.; Zarate, X.; Manriquez, J. M. Novel Mono- and Heterobimetallic Chromium−nickel s-Indacene Complexes: Synthesis, Characterization, and DFT Studies. Can. J. Chem. 2014, 92 (7), 677–683. [link]

    6. MacLeod Carey, D.; Morales-Verdejo, C. A.; Muñoz-Castro, A. [As@Ni12@As20]3− and [Sn@Cu12@Sn20]12− Clusters. Related Structures with Different Construction Philosophy. Chem. Phys. Lett. 2015, 638, 99–102. [link]

    7. Andrades, J.; Campanini, J.; Vásquez, D.; Silvestri, C.; Morales-Verdejo, C. A.; Romero, J.; Mella, J. A Combined CoMFA and CoMSIA 3D-QSAR Study of Benzamide Type Antibacterial Inhibitors of the FtsZ Protein in Drug-Resistant Staphylococcus Aureus. SAR QSAR Environ. Res. 2015, 26 (11), 925–942. [link]

    8. Araneda, J. F.; Morales-Verdejo, C. A.; Adams, C.; Martínez-Díaz, I.; Chávez, I.; Garland, M. T.; Rojas, R. S.; Molins, E.; Manríquez, J. M. A New Series of Zirconium Metallocenes Derived from Partially Alkylated S-Indacene with Potential Applications in the Polymerization of Ethylene. Inorganica Chim. Acta 2015, 434, 121–126. [link]

    9. Martinez, I.; Zarate, X.; Schott, E.; Morales-Verdejo, C. A.; Castillo, F.; Manríquez, J. M.; Chávez, I. A Theoretical Study of Substituted Indeno[1,2-b]Fluorene Compounds and Their Possible Applications in Solar Cells. Chem. Phys. Lett. 2015, 636, 31–34. [link]

    10. MacLeod Carey, D.; Gomez, T.; Morales-Verdejo, C. A.; Muñoz-Castro, A. Influence of Ag+ on the Magnetic Response of [2.2.2]Paracyclophane: NMR Properties of a Prototypical Organic Host for Cation Binding Based on DFT Calculations. ChemistryOpen 2015, 4 (5), 651–655. [link]

    11. Morales-Verdejo, C. A.; Zarate, X.; Schott, E.; Correa, S.; Martinez-Díaz, I. Photophysics of Tungsten–Benzylidyne Complexes Derived from s-Indacene: Synthesis{,} Characterization and DFT Studies. RSC Adv. 2015, 5 (32), 25594–25602. [link]

    12. Camacho Gonzalez, J.; Morales-Verdejo, C. A.; Muñoz-Castro, A. Variation of Through-Space Magnetic Response Properties upon the Formation of Cation–π Interactions: A Survey of [Ag(η-CH2CH2)3]+via DFT Calculations. New J. Chem. 2015, 39 (6), 4244–4248. [link]

    13. Apablaza, G.; Montoya, L.; Morales-Verdejo, C. A.; Mellado, M.; Cuellar, M.; Lagos, C. F.; Soto-Delgado, J.; Chung, H.; Pessoa-Mahana, C. D.; Mella, J. 2D-QSAR and 3D-QSAR/CoMSIA Studies on a Series of (R)-2-((2-(1H-Indol-2-Yl)Ethyl)Amino)-1-Phenylethan-1-Ol with Human Β3-Adrenergic Activity. Molecules . 2017. [link]

    14. Romero-Parra, J.; Chung, H.; Tapia, R. A.; Faúndez, M.; Morales-Verdejo, C. A.; Lorca, M.; Lagos, C. F.; Di Marzo, V.; David Pessoa-Mahana, C.; Mella, J. Combined CoMFA and CoMSIA 3D-QSAR Study of Benzimidazole and Benzothiophene Derivatives with Selective Affinity for the CB2 Cannabinoid Receptor. Eur. J. Pharm. Sci. 2017, 101, 1–10. [link]

    15. Muñoz-Castro, A.; Caimanque-Aguilar, W.; Morales-Verdejo, C. A. Computational Study of 13C NMR Chemical Shift Anisotropy Patterns in C20H10 and [C20H10]4–. Insights into Their Variation upon Planarization and Formation of Concentric Aromatic Species in the Smaller Isolated-Pentagon Structural Motif. J. Phys. Chem. A 2017, 121 (13), 2698–2703. [link]

    16. Mella, J.; Villegas, F.; Morales-Verdejo, C. A.; Lagos, C. F.; Recabarren-Gajardo, G. Structure-Activity Relationships Studies on Weakly Basic N-Arylsulfonylindoles with an Antagonistic Profile in the 5-HT6 Receptor. J. Mol. Struct. 2017, 1139, 362–370. [link]

    17. Rojas-Mancilla, E.; Oyarce, A.; Verdugo, V.; Morales-Verdejo, C. A.; Echeverria, C.; Velásquez, F.; Chnaiderman, J.; Valiente-Echeverría, F.; Ramirez-Tagle, R. The [Mo6Cl14]2− Cluster Is Biologically Secure and Has Anti-Rotavirus Activity In Vitro. Molecules . 2017. [link]

    18. Morales-Verdejo, C. A.; Camarada, M. B.; Arroyo, J. L.; Povea, P.; Carreño, G.; Manriquez, J. M. Effect of the Homo- and Heterobimetallic Compounds Derived from s-Indacene on the Thermal Decomposition of Ammonium Perchlorate. J. Therm. Anal. Calorim. 2018, 131 (1), 353–361. [link]

    19. Martínez, I.; Morales-Verdejo, C. A.; Karam, A.; González, T.; Coll, D. S.; Rojas, R.; Rodríguez, B. E. Ethylene Polymerization by Binuclear Chromium Complex with Tetrakis(Pyrazolyl-Methyl)Benzene Ligand. Polym. Bull. 2020, 77 (5), 2269–2284. [link]

    20. Abarca, G.; Ríos, P. L.; Povea, P.; Cerda-Cavieres, C.; Morales-Verdejo, C. A.; Arroyo, J. L.; Camarada, M. B. Nanohybrids of Reduced Graphene Oxide and Cobalt Hydroxide (Co(OH)2|rGO) for the Thermal Decomposition of Ammonium Perchlorate. RSC Adv. 2020, 10 (39), 23165–23172. [link]

    21. Arroyo, J. L.; Norambuena, Á.; Reyes, H.; Valdebenito, C.; Abarca, G.; MacLeod Carey, D.; Morales-Verdejo, C. A. Heterobimetallic Catalysts for the Thermal Decomposition of Ammonium Perchlorate: Efficient Burning Rate Catalysts for Solid Rocket Motors and Missiles. Inorg. Chem. 2021, 60 (3), 1436–1448. [link]

Translate »